AD-A241 831
R

MacTester: A Low-Cost Functional
Tester for Interactive Testing and
Debugging

Carl Ebeling and Neil McKenzie

Department of Computer Science & Engineering
University of Washington
Seattle. WA 98195

Technical Report 31-10-02

MNrtAahar 1001

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Universiry of Washimgton

Seattle 98195

13852 91 10 22 150
\\\\\\\\"M \‘\\\ .,.x\\\\‘k\ b

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SECUNITY CLASSIFICATION OF ‘1S PAGE (When Data Entered)
.

READ INSTRUCTIONS
7. REPORT NUMBER 2. GOVT ACCESSION NO.| } RECIPIENT'S CATALOG NUMBER
©1-10-02
4. TITLE (and Subtitle) 3. TYPE OF REPORT & PERIOD COVERED

MacTester: A Low-Cost Functional Tester for

i ' : Technical
Interactive Testing and Debugging echnica

6. PERFORMING ORG. REPORT NUMBER

7. AUTHONR(e) 8. CONTRACT OR GRANT NUMBENR(e)
Carl Ebeling and Neil McKenzie NO0O14-88-K-0453
) Y.
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 ::220.Ag°!.l.xl==rTT"Pu'uO.J!!E' TASK

Northwest Laboratory for Integrated Systems
University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 98199

1. CONTROLLING OFFICE NAME AND ADDRESS 12. AEPOARY DATE
DARPA-1ISTO = e
1400 Wilson Boulevard © Nums iC Acks
Arlington. VA 22209

T4. MONITORING AGENCY NAME & ADORESS(/! dilleten! lrom Controlling Office) 18. SECURITY CLASS. (of thie report)
Office of Naval Research - ONR

Information Systems Program - Code 1513: CAF

800 North Quincy Street TSa. ?ggéagfgwcnnoufoovucuAmuc
Arlington, VA 22217

16. DISTRIDUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17. DISTRISUTION STATEMENT (of the sbetract entered in Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide !l necessary and identily by block number)

Testing, Debugging, Functional Testing

20. ABSTRACT (Continue on reverss side " neceseary and identify by block number)
We describe a low-cost, functional tester for the MacIl that allows students

to test and debug digital systems interactively. This tester provides a 1arqq
number of programmable I/0 signals and can be used to test chips, boards and
subsystems. Test programs are easily written using a simple, intuitive inter-
face and we expect a variety of interactive graphical testing and debugging
environments to be built for the tester. We plan to make this tester
generally available in kit form.

DD , %%, 1473 eoimion oF t NOV 88 13 OBsOLETE
$/N 0102-LF -014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

MacTester: A Low-Cost Functional
Tester for Interactive Testing and
Debugging

Carl Ebeling and Neil McKenzie
Depa.tment of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 91-10-C2
October, 1991

LR I 4 e
L X o e~
Pl I

MacTester: A Low-Cost Functional Tester
for Interactive Testing and Debugging

Carl Ebeling and Neil McKenzie

Departmnent of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract

We describe a low-cost. functional tester for the Macil that allows students te test and
debug digital systems interactively. This tester provides a large number of
programmable [/0 signals and can be used to test chips, boards and subsystems. Test
programs are easily written using a simple, intuitive interface and we expect a varietv
of tnteractive graphical testing and debugging environments to be built for the tester.
We plan to make this tester generally available in kit form.

Introduction

Testing design projects in the University is typically done in an ad hoc way. Some sort
of hardware environment is designed around the project to create a self-contained
system which can be operated. observed and debugged using a logic analyzer or
oscilloscope. Testing and debugging a partially completed system or a subsystem that
operates in a complex environment can be very difficuit. As the complexitv of projects
grows with the complexity of off-the-shelf parts and the capability of design tools. the
problem of testing is becoming even more difficuit. This is especiaily true for custom
VLSI chip designs. Although commerctal testers provide the necessarv tunctionality.
their cost is prohibitive and the usual testing environment is primitive.

The goal of the MacTester project is to remedy this situation by providing a powerful.
interactive environment for functionally testing digital systems. Functional testing
means that the values and sequencing of the /0 signals can be verified but that precise
timing cannot. [n particular, a functional tester cannot be used to determine how tast a
system can run. While speed testing is clearly important, testing and debugging
concerns tend to dominate in the classroom laboratory situation. We believe that the

issues of functional testing and debugging can be separated from those of timing
validation.

There are three styles of testing: Offline. oniine and interactive. The usual method is
offline testing where a list of test vectors is prepared and presented offline to the device
under test (DUT). The resulting responses are collected and analyzed after the test is
compieted. Online testing is performed in real time where each test vector is generated
and the response analyzed before succeeding test vectors are generated. Interactive
testing allows the user to interact with the DUT on a vector by vector basis. The user can
inspect the results of the current test vector to determine the next vector. Efficient
debugging is facilitated by a good interactive testing environment. The onlv drawback
lu interactive testing s that it cannot be used for circuits with dynamic state.

(Interested parties should contact ebeling@cs. washington.edu)

The MacTester has been designed to allow all three types of testing, although we view
interactive testing and debugging as the most important. The Macintosh computer is an
ideal host for interactive testing and debugging because of its uniform. intuitive user
interface and interactive graphics capability. The tester and the software interface
provide the mechanism with which a wide variety of testing environments can be buiit.
We expect many different graphical and procedural {nterfaces to the tester to be built as
users define their own testing needs.

Cost and functionaliity were often competing goals in the design of the MacTester. We
decided to provide the [ollowing features that we felt were necessary for a tester used in
design laboratories:

* The tester is easily shared by more than one project. Changing the test setup from one
project to another takes only the few minutes needed to change the power and ground
jumpers. (A pre-test can be performed to ensure that the power and ground setup
matches the spectfication.) This ability to share reduces the number of testers that are
needed and the overall cost.

» The tester provides a iarge number {128) of test signalis so that even large projects can
he accommodated.

* Al]l signals are bi-directional and can be individually set to the input or output state.
Although this makes the tester implementation more expensive, it facilitates sharing
between projects since all pins can be redefined in software. Moreover. since the
direction can be set dynarnically, tri-state busses can be tested.

* Provision has been made for dynamic circuits by including an on-bnard memory
capable of storing several thousand test vectors. The tester can indeper.dentlv present
these vectors at a rate of 1 MHz. Although dynamic circuits cannot be tested in a truly
interactive tashion. the tester software includes a construct that allows the user to
maintain the illusion.

We will begin by descrnibing the software interface to the tester to show how the user
views the device under test. We then outline the implementation of the hardware and
the sottware.

The Tester Intertace

In this section, we describe how the device under test (DUT) appears from the point of
view of a test program and how the program manipulates the I/0 signals. The tester
software provides a simple, intuitive interface that makes it easy for programs to use
the tester. These programs can range from simple test programs devised by the user to
sophisticated interacttve programs that supply a visual interface via schematics and
timing diagrams. A simple test program for a combinational multiplier is shown in
Figure 1.

To the user. the pins of the DUT appear as variables in the test program. The user first
defines a set of signal vartables in the DefineSignals section. each as a collection of
pins. and then manipulates the values of the pins via these variables. Changing the
value of a signal variable changes the values of the associated pins and reading the
value of a signal variable reads the values of the pins. Although most signal variables
are declared as input or output variables. they can also be declared to be bi-directional
and the direction changed at any time.

A test proceeds as a series of test steps, each activated by the Next control statement. In
each test step. a new set of values is first driven in unison onto the DUT input pins and

then the resulung values of the DUT output pins are latched. These events are separated
by enough tin.e to allow rhe output values to become stable before they are sensed. In
fact. the tester provides a very limited version of speed testing by allowing the user to set
this time intervai. The delay from the clock driving the input values to the clock
latching the ouiput values can be preset to any value from 20 ns. to 1 usec. in increments
of about 5 ns.

.x Define the chip signals ~/
SefinesSigrals

Signal (Multiplier, "2,4,6,8,10,12,14,16", INPUT, Q)
Signal (Multiplicand, "2,5,7,9,11,13,15,17", INPUT, J):
Signal (Resuit, "2S5:18"™, JUTPUT):
ZndSignails
main ()
{
3eginTest;
for (i=0; 1<256; i++) |
for (j=0; 3<256; i++) |
SetSignal (Multiplier, 1)
JetsSignaili (Multipliicana,)
Next;
Lf (GetSignal (Result) '= 1x7) |
orinti("errcr: *d * ‘d ==> id\n", I, 3, Getsignai(Result}):

}
;

EndTest:

Figure 1: Test program for a combinational multiplier.

The values of signals are changed via the SetSignal statement. and the values accessed
via the GetSignal statement. SetSignal statements do not take effect immediately.
but the values specitied are collected and applied to the pins of the DUT by the Next
sequencing statement. which performs all accumulated changes in parallel. The

et Signal statement returns the value of the signal latched by the most recent Next
statement. Thus a step in the test program typically consists of a set of Setsignal
statements followed by a Next statement follewed by a set of GetSignal statements.

The direction of a signal declared in the DefineSignal statement can be INPUT. CUTPUT.
or BIDIRECTIONAL. The direction of bi-directional signals can be changed at any time
via the SetDirection statement. These changes are accumnulated like signal value
changes and applied by the next Next statement.

Each test step can be thought of as a test vector, except that each test vector is created on
the fly by the prograin and the resuiting response is available immediately and can be
used to generate the next test vector. This makes testing truly interactive from the point
of view of the test program and this view can be passed along to the user.

The tester provides no signals other than those provided by the user program. In
particular. the test program must supply the clocks by changing a signal variable or set
of variables explicitly. Thus a single clock cycle for a circuit using a two-phase non-
overlapping clock requires at least four test vectors. Figure 2 gives a test program for a
single-stage ptpelined multiplier.

*~ Define the chip signals =~/

Zetfinesignals
Jignal (Multiplier, "© :.06,8,10,12,14,16", INPUT, 2);
3ignal (Multiplicand, .5,7,9,11,23,1c,17", INPUT, 2):
Signal (Resu_z, "28:1 ZUTPUT) ;
Signal(Phii. ‘26", DI
Signal (Phi2. 27", S)
ZndSignails
TlockChig() * Perrorm a single Phil/Phi2 clock cycle =/
Next; /* Assert data before clocking *
ZetSignal (Phil, I); XNexrt:
ZetSignai (Phi2, 1); Nexrt:;
SetSignal (Phi2, 2); Next:
ZetSignal (Phil, 1), Next:
static Int lastX, lastY, lastResult; . * Previous test */
inztrult() * Fill the pipeline ~*/
cetldignalitMelcioizern, oY
JetsSignal (Mult.ciicand,)
ZlockChip)
_astResu.z = _astX = lastyY = ;
Testmult(x,) /* Pertform cne test or the multiplier ~-
int %, v
S3e2Signal (Multiplicer, =)
SetSignal (Multipglicand, v):
ZlockChip():
£ (GetSign:.(Resulz) '= lastResult)
orintf("“rror: x * “x => ix{ixj\n", _astX, lastY,
SetSignal (Tesult), _astResult);

\

_astResuls = = < vy
.ascX =
.astYy = v

main()

3eginTest:

initmulit () /* Fill pipeiine */
for (1i=0; i1<256:; i++) |
for (3=0; <256; ++) |

~estmulit (i, °j;

)
J

testmult (9, 3); /* Flush pipeline */
ZndTest:

Figure 2: Test program for a single-stage pipelined multiplier.

Dynamic and Pseudo-static Circuits

Dvnamic circuits cannot be tested interactively because the dynamic state is lost unless
the ctircuit is operated continuously. Since the time for which dynarnic state can be held
is typically much less than a second. user interaction is not possible. Online testing
may also be ruled out i the time between test vectors cannot be bounded. In particular,
programs running under A/UX can be interrupted by the operating system for reiativelv
long periods of time.

The MacTester accommodates dynamic circuits via onboard test vector memory which
pernits offline testing. In online mode, the Next statement causes accumulated values
to be written directly to the DUT pins and the response to be read back. In offline mode,
the test vectors generated Dy the Next statement are stored in test vector memory and
presented all at once, independently from the test program. The responses are
accumulated in the test vector memory and can be read back after the offline test has
completed.

—estmult (x, y) /* Perform c(ne test or the multipl/ier =*'
OO0 XK, v
Jetdignal (Multiplier, x);
SetSignal (Mulrtiplicand, v):
ZlockChip () ;
Verify
if (GetSignal (Result) '= lastResult) {
printf ("Error: 3x * %Ix => %x{%x]\n",
lastX, lastY, GetSignal (Result), lastResult):
!
EndvVerify
lastResult = x * vy;
lastX = x;
last¥ = y;

main ()

2eginTestc;
for (1=0; 1<256; L-+)
BeginDynamic;
initmult () ; /* Fill pipeiine */
for (3j=0; 3<256; 3++)
testmult (i, 3);
testmult (0, Q) /* Flush pipeline */
EndDynamic;

ZndTest;

Figure 3: The modified test program for a dynamic one-stage, pipelined multiplier.

The tester software package contamns a dynamic btock construct thai is used to
mawtain the illusion 1::at the test program is online when in fact it is not. A dvnamic
block is created by wr .ming an arbitrary set of statements with
3eginDvnamic/EndDyram: c statemen:s. A dvnarmnic block is executed twice. In the first.
generate. phase. all the - : vectors ¢ ::zrated within the block are accumulated and
presented offline when ;. nd of the vnamic block is encountered. In the second.
verify, phase, the respons.. vectors are available in the right sequence and statements
that access these are executed.

Clearly this places restrictions on the program statements in the dynamic block since
some should be executed only in the first phase. and others only in the second phase.
The SetSignal statement is defined to have effect only in the generate phase - other
statements that are to be restricted to the generate phase can be protected using the
Senerate macro. The vVerify macro is used to protect statements that are executed only
in the verify phase.

The test program in Figure 2 can be changed to test a completely dynamic pipelined
multiplier as shown in Figure 3. The dynamic block has been placed as shown because
the test vector memory is limited to about 5300 vectors. Note that {f the ver:z =
nrotection macro s ieft out. the program wiil produce errors dunng the generate phase
because the result of Gets:1gnai is undefined dunng this phase.

Dvnamic circuits .n certainiv ::ake test programs more complicated. Fortunately,
most dynamic cir :ts can surive online testing since if the computation required to
generate each test vector is limited. online testing can proceed at about 50 KHz. This 1s
true for programs under MacOS. but we were pleasantly surprised to tind that test
programs running under A/UX generally worked as well.

F5eudo-Static ChCuo, Jdiat is. ciicuits that are stauc at sovime pould ul ithe clock cvcele,
can be tested interactively. In this case. the dvnamic block is limited to a few
statements and the test program can be interactive at the granularitv of a clock cycle
rather than each test vector. For example. if the multiplier in Figure 3 were pseudo-
static, the dynamic block would be coniined to the C.:ckChip procedure.

Implementation

A very high-level block diagram of the tester is shown in Figure 4 During one step of an
online test. the appropriate level 1 registers are f{irst written by the host. These vaiues
are then transierred tn unison to the levei 2 registers which are connected directly to
the DUT pins. The level 3 registers are then latched after some user-specitied delav.
Finallv. the results in the level 3 registers are read back by the host.

Offline testing is performed by first downloading the test vectors into the test vector
memory and indicating the start and end address of the sequence. The tester then
performs the offline test by transferring test vectors to the level 1 registers and results
{rom the level 3 registers back into test vector memory. When the end address is
encountered, a done bit is set in the interface control register and the host can upload
the responses. The oflline test can also be placed in a loop so that a particular test
sequence can be monitored with an oscilloscope.

The hardware design was simplified by the use of Xilinx programmable gate array
chips. The data path is implemented in six XC30320 chips and the control logi~ in a
seventh Although the implementation would have been possible using fewer of the
larger Xilinx gate arrays. the cost per pin grows almost quadratically, and the XC3020
was chosen as the most cost-effective size. The choice of Xilinx gate arrays allows the
data path and control to be changed by the user via the Xilinx design software. For

example, the programmable delav was unplemented after the fact by using a
muitiplexor to spectfy the number of logic levels between the drtve and latch clocks.

Data Bus

5 32 level 1 levet 2 levei 3
NuBus ‘ ‘

Intertace

Interface
Cable F

Test
Vector —
Memory I‘E‘ I
2 128
,1 -y ,1 -] -1
Hdirecuon | LK H
cli

delay

Figure 4: The overall block diagram of the tester. The data path is i28 bits deep.

The test vector memory is potentially a large and expensive part of the tester. We chose
to trade cost for speed by multiplexing the RAM six ways. This reduces offline testing
rate from a possible 5SMHz to 1MHz. but reduces the number of static RAM's from 48 to 8
and reduces the number of I/0 pins required for the datapath.

The tester is implemented as an 8x13 inch PC board as shown in Figure 5. This board is
connected via a simple parallel {intertace to an ADDEX NuBus intertace board that plugs
directly into the Macll. This interface is quuc simplz nd interfacing the tester to other
busses like the SBUS or VME bus is strajghtforward.

Software Interface Implementation

At the lowest level, the tester control and data registers are mapped directly into the
address space of the user program. This is possible for both MacOS and A/UX programs
and greatly simplifies the interface implementation. At the lowest level, a set of
macros is provided for accessing these registers and for performing all the tester
control operations. In addition. memory is allocated for collecting signal values and
directions for each signal variable defined.

At the next level. user-visible operations are implemented using the low-level macros
and interface memory. The SetSignal. SetDirection and GetSignal operations are
implemented in two different ways depending on when the signal variables are defined.
If they are defined dynauucally, then these cpcratons must be tnterpreted. Otherwise
they can be pre-compiled into a much more efficient implementation.

4 vailue oul

SRSV A 0 AR AL AR A

I (I

oLl

7 RAM/

]
|
]
ramg] '
(I
]

TITITT

Z RAM

BR300 ‘ L 13020 | b e

Figure 5: Outline of the tester PC board.

There 1s a wide range of possible testing and debugging environments that can be built
on top of the MacTester. First. as shown in the sample programs. wnting test programs
is straightforward. [n fact. a program is a very powerful way to specifv the behavior ot
the environment of the systern being tested. One such technique 1s to wnite a procedure
that takes an abstract operation and maps it into the sequence of signal values that
implements that operation. For example, u testing a dvnamic RAM. one would write
nrocedures tor the read and write operations that generates the multipiexed address and
the appropnate RAS/CAS. An effective wav to familiarize students with the operation
i1 the more compiex otf-the-shelf parts is bv having them write such test programs.

\We expect a variety ot graphical testng environments to be developed as weil. In such

an environment. the tnputs and outputs of the device being tested can be displaved in

separate windows and formatted tn different ways. for example as timtng diagrams or a

time line of values. For example. Capilano has graphical simuiation tools which can

intertace to other software using what is called the Meda interface. Using these Lools. R
the tester can be tncorporated into the graphical simulation as a separate device. All

the graphical /0 devices such as keypads. displays. and timing diagrams that are

nrovided by the Captlano sunulation tools can then be used to test and debug one's .
project tn the tester. Moreover. the project can be simulated as part ot a larger svstem as

described by schematic drawings.

We also plan to use the tester in the RNL simulation environment. RNL provides an
interactive Lisp environment for testing MOS circuits. First. the simulation can be
replaced bv the tester and the interactive Lisp environment used to test the project.
Second. if there is a circuit description for the project, then the same program used tu
test the design can be used to test the finished product. Moreover, the simulation and
the tester can be run in parallel and the results compared. This same strategy can be
sed for other simulators. notablv the COSMOS simulator.

Status

The toll 128 test pin PC board version has been completed and i{s currently being used to
test two VLSI chips using test programs and the simpie software intertace. The

:ntertace to the Capilano softaware will be completed this summer, as well as RNL and
(COSMOS frontends. Anvonednterested in obtaining this tester should contact the

authors. We are currently planning to make the tester avatlable in kit form along with
1 set ol test sottware tor the Maclil.

Acknowicdgements

“his work was lunded in part by Apple Computer. Inc.. grant ER0O030-65-5742. and NSF
grant CCRB657589A02. The Northw=st Laboratorv for Integrated Systems is sponsored
in part by DARPA under contgact NOOO14-RR-K-0453.

